(Refer Slide Time: 17:10)

Copying lists

* How can we make a copy of a list?
» A slice creates a new (sub)list from an old one
* Recall 1[:k] is 1[@:k], 1[k:] is 1[k:len(1)]

» Omitting both end points gives a full slice
1[:] == 1[0@:1en(l)]

» To make a copy of a list use a full slice
list2 = list1[:] b Sl ol

This is something which we will see is useful in certain situations, but what if we do not
want this to happen what if we want to make a real copy of the list. So, recall that a slice
takes a list and returns us a sub list from one position to another position. The outcome
of a slice operation is actually a new list, because in general, we take a list and we will
take a part of it for some intermediate position to some other intermediate position, so

obviously, the new list is different from the old list.

We also saw that when we looked at strings that we can leave out the first position or the
last position when specifying a slice. If we leave out the first position as this then we will
implicitly say that the first position is 0, so we start at the beginning. Similarly, if we
leave out the last position like this, then we implicitly assume that the last position the

slice is the length of this list of the string and so it goes to the last possible value.

If we leave out the first position, we get a 0; if we leave out the last position, we get the
length. If we leave out both position, we just put colon with nothing before nothing after
logically this becomes 0 and this becomes the length. We have both characteristics in the

same thing and we call this a full slice.

Now let us combine this observation which is just a short cut notation with this
observation that each slice creates a new sub list. So, what we have is that 1 with just a

colon after it is not the same as 1 it is the new list created from the old list, but it as every

113



value in | in the same sequence. This now gives us a simple solution to copy a list instead

of saying list2 is equal to listl, which makes then both.

Remember if I do not have this then I will get list] and list2 pointing to the same actual
list. There will be only 1 list of values and will point to the same. But if I do there have
this then the picture changes then what happens is that the slice operation produces a new
list which has exactly the same length and the same values and it makes list2 point to
that. Therefore, after this listl and list2 are disjoint from each other any update to list2
will not affect list] any update to listl will not affect list2. Let us see how this works in
the interpreter to convince ourselves this is actually the way python handles this

assignment.

(Refer Slide Time: 19:45)

As before let us start with listl is 1, 3, 5, 7 and list2 now let us say is the slice. So, now,
if is update listl at position 2 to be 4 then listl looks like 1, 3, 4, 7. But list2 which was a
copy is not affected right. When we take a slice we get a new list. So, if we take the
entire list as a full slice we get a full copy of the old list and we can assign it safely to a

new name and not worry about the fact that both names are sharing the value.

114



(Refer Slide Time: 20:19)

Digression on equality

» Consider the following assignments

listl = [1,3,5,7] Bl — 1= el |
1astZ = [1,3,5,7] . s a7 ‘
list3 = list2 Wez.— 13,5,
7
s

This leads us to a digression on equality. Let us look now at this set of python
statements. We create a list 1, 3, 5, 7 and give with the name list] and, when we create

another list 1, 3, 5, 7, and give it the name list2.

And finally, we assign list3 to be the same values as list2 and this as be said suggest that
list3 is actually pointing to the same thing. So, we have now pictorially we have two list
of the form 1, 3, 5, 7 stored somewhere. And initially we say that list] points to this and

list2 points to this in the last assignment say that list3 also points to this.

(Refer Slide Time: 21:10)

Digression on equality

» Consider the following assignments
Listl =113 ;5,7]
list2 = [1,3,5,7]
list3 = list2

« All three lists are equal, but there is a difference
» listl and list2 are two lists with same value

* list2 and list3 are two names for same list

115



All three lists are equal, but there is a difference in the way that they are equal. So, listl
and list2 are two different lists, but they have the same value right. So, they happen to
have the same value, but they are two different things and so, if we operate on one it

need not preserve this equality any more.

On the other hand list2 and list3 are equal precisely because they points to the same
value, there is exactly one list in to which they are both pointing. So, if we update list3 or
we update list2 they will continue to remain equal. There are two different notions of
equality whether the value is the same or the actual underline object that we are referring
to by this name is the same. In the second case, updating the object to either name is

going to result in both names continuing to be equal.

(Refer Slide Time: 21:57)

Digression on equality ...

Eistl =alidy 3557
list2 = [1,3,5,7]
list3 = list2

* x == y checks if x and y have same value
* x is y checks if x and y refer to same object

listl == list2 is True
list2 == 1list3 is True

list2 (is) list3 is True
listl is list2 is False

Python has we saw this operation equal to equal to, which is equivalent or the
mathematically equality which checks if x and y as names have the same value. So, this
will capture the fact that listl is equal to list2 even though they are two different lists

they happen to have the same value.

To look at the second type of equality that list3 and list2 are actually the same physical
list in the memory. We have another key word in python called 'is'. So, when we say x is
y what we are asking is, whether x and y actually point to the same memory location the
same value in which case updating x will effect y and vice versa. We can say that x is y

checks if x and y refer to the same object.

116



Going by this description of the way equal to equal to and is work; obviously, if list2
list3 are the same object they must always be equal to - equal to. So, x is y then x will
always equal to equal to y, because there are actually pointing to the same thing. But in
this case although listl list2 are possibly different list they are still equal to - equal to,

because the value is the same.

On the other hand if I look at the is operation then listl list2 is list3 happens to be true,
because we have seen that this assignment will not copy the list it will just make list3
point to the same thing is list2. On other hand listl is list2 is false that is because they are
two different list. So, once again its best to verify this for ourselves to convince ourselves

that this description is actually accurate.

(Refer Slide Time: 23:41)

Let us type out those three lines of python in the interpreter. So, we say listl is 1, 3, 5, 7
list2 is also 1, 3, 5, 7 and list3 is list2. Now, we ask whether listl is equal to list2 and it
indeed is true, but if we ask whether listl is list2 then it says false. So, this means that
list] and list2 are pointing to the same value physically. So, we update one it will not

update the other.

On the other hand, if we ask whether list2 is list3 then this is true. If for instance we
change list2, 2 to be equal to 4, like we are done in the earlier example then list2 has now
become 1, 3, 4, 7. So, if we ask if listl is equal to list2 at this point as values that's false.

Therefore, because list]l continues to be 1, 3, 5, 7 and list2 has become 1 3 4 7; however,

117



if we ask whether list2 is equal to list3 is true that is the case, because list3 is list2 in the
sense if they both are the same physical list and so when we updated list3 list2 will also

be updated via list3.

(Refer Slide Time: 24:54)

Concatenation

» Like strings, lists can be glued together using +
listl = [1,3,5,7]
list2 = [4,5,6,8]
list3 = listl + list2
* list3isnow [1,3,5,7,4,5,6,8]
* Note that + always produces a new list
A - =

listl = [1,3,5,7] Y A e 1 T 3
list2 = listl iy b
listl = listl + [9]

Like strings, we can combine lists together using the plus operator. So, plus is
concatenation. So, if we have listl is the value 1, 3, 5, 7 list2 is the value 4, 5, 6, 8. Then
list3 equal to listl plus list2 will produce for us the value 1, 3, 5, 7, 4, 5, 6, 8. One
important thing to recognise in our context of mutable and immutable values is that plus
always produces a new list. If we say that listl is 1, 3, 5, 7 and then we copy this list as a
name to list2. We saw before that we have 1, 3, 5, 7 and we have two names list] and

list2.

Now if we update list]l by saying listl plus nine this will actually generate a fresh list
which has a nine at the end and it will make list]l point their and list2 will no longer be
the same right. So, listl and list2 will no longer point to the same object. Let just confirm

this.

118



(Refer Slide Time: 26:00)

In the python interpreter let us set up listl is equal to 1, 3, 5, 7 and say list2 is equal to
listl. Then as we saw before if we say listl is list2 we have true. If on the other hand we

reassign listl to be the old value of list] plus a new value 9.

This extends, listl to be 1, 3, 5, 7, 9. Now we will see the list2 is unchanged. So, listl
and list2 have become decoupled because which time we apply plus it is like taking slice.
Each time we apply plus we actually get a new list. So, listl is no longer pointing to the
list it was originally pointing to. It is pointing to a new list constructed from that old list

with a 9 appended to it at the end.

119



(Refer Slide Time: 26:49)

Summary

» Lists are sequences of values
* Values need not be of uniform type

» Lists may be nested
« Can access value at a position, or a slice

* Lists are mutable, can update in place
* Assignment does not copy the value
* Use full slice to make a copy of a list

To summarise we have now seen a new type of value called list. So, list is just a
sequence of values. These values need not be of a uniform type, we can have mixed list
consisting or list, Boolean, integers, strings. Although almost always we will encounter
list, where the underline content of a list is of a fixed type. So, all position will actually
typically have a uniform type, but this is not required by python and we can nest list. So,

we can have list of list and list of list of list and so on.

As with strings, we can use this square bracket notation to obtain the value at a position
or we can use the square bracket with colon notation to get a sub list or a slice. One new
feature of python, which we introduced with list, is a concept of a mutable value. So, a
list can be updated in place we can take parts of a list and change them without effecting
the remaining parts it does not create a new list in memory. One consequence is this is

that we have to look at assignment more carefully.

For immutable values the types we have seen so far, int, float, bool and string when we
say x equal to y the value of y is copied to x. So, updating x does not affect y and vice
versa. But when we have mutable values like list we say 12 is equal to 11 then 12 and 11
both point to the same list. So, updating one will update the other, and so we be have

little bit careful about this.

If we really want to make a copy, we use a full slice. So, we say 12 is equal to 11 colon

with nothing before or after, this is implicitly from 0 to the length of 11, and this gives us

120



a fresh list with exact same contents as 11. And finally, we saw that we can use equality
and is as two different operators to check whether two names are equal to only in value

or also are physically pointing to the same type.

121



